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PREFACE 

This investigation was conducted for the Office, Chief of 

Engineers, U. S. Army, by personnel of the U. S. Army Engineer 

Waterways Experiment Station (WES), CE, as a part of Project 

4A161102AT22, Task CO, Work Unit 001, "Dynamic Soil-Track Interactions 

Governing High-Speed Tracked Vehicle Performance," 

The mathematical model, prediction methodology, and analyses 

reported herein were performed by Drs. Behzad Rohani and George Y. 

Baladi of the Geomechanics Division (GD), Structures Laboratory, during 

the period October 1980 - October 1981 under the general direction of 

Mr. C. J. Nuttall, Jr., Chief, Mobility Systems Division (MSD), 

Geotechnical Laboratory (GL), and Dr. W. F. Marcuson III, Chief, GL. 

The field test program was directed by Messrs. N. R. Murphy, Jr., B. G. 

Schreiner, and C. E. Green, MSD. The field direct shear device 

described in Appendix B for measurements of soil properties was 

designed by Mr. J. Q. Ehrgott, GD. The field measurements of the 

vehicle performance were processed by Mr. P. J. Kuykendall, MSD. 

Numerical calculations using the WES terrain-vehicle interaction model 

were performed by Mr. D. E. Barnes and Mrs. J. T. Carlisle, GD. This 

report was written by Drs. Rohani and Baladi. 

COL Nelson P. Conover, CE, and COL Tilf , ■ C. C .el, CE, were 

Commanders and Directors of the WES during the investigation. 

Mr. Fred R. Brown was Technical Director. 
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CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI) 
UNITS OF MEASUREMENT 

U. S. customary units of measurement used in this report can be con- 

verted to metric (SI) units as follows: 

 Multiply  

feet 

horsepowar 

inches 

inches per second 

miles per hour (U. S. statute) 

pounds (force) 

pounds (force)-inch-second 
squared 

pounds (force) per cubic inch 

pounds (force) per square inch 

pounds (mass) 

pounds (mass) per cubic foot 

square inches 

By To Obtain 

0.3048 metres 

745.6999 watts 

25.4 millimetres 

25.4 millimetres per second 

1.609344 kilometres per hour 

4.448222 newtons 

0.11306064 kilograms-square metres 

0.2714 megapascals per metre 

6.894757 kilopascals 

0.4535924 kilograms 

16.01846 kilograms per cubic metre 

6.4516 square centimetres 
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STEERABILITY ANALYSIS OF TRACKED VEHICLES ON SOFT SOIL; 

THEORETICAL PREDICTIONS VERSUS FIELD MEASUREMENTS 

PART I:  INTRODUCTION 

Background 

1. Development of high-mobility/agility tracked combat vehicles 

has received considerable attention recently because of the possibili- 

ties these vehicles offer for increased battlefield survivability 

through the avoidance, by high-speed and violent maneuver, of hits by 

high-velocity projectiles and missiles. In order to design and develop 

such vehicles rationally, it is necessary to have a quantitative under- 

standing of the interrelationship between the terrain factors (soil 

type, soil shear strength, and compressibility, etc.) and the vehicle 

characteristics (weight, track length and width, location of center of 

gravity, etc.) during steering. The actual mechanism of terrain- 

vehicle interaction during steering is undoubtedly very complex. Thus, 

in order to study such an interrelationship, it is necessary to con- 

struct idealized mathematical models of the actual system. The accuracy 

and range of application of such models must, of course, be determined 

from actual mobility experiments and obviously must depend on the 

degree of relevance of the idealized model as an approximation to the 

real behavior. A research program was initiated at the U. S. Army 

Engineer Waterways Experiment Station (WES) in 1976 to develop a mathe- 

matical model of terrain-vehicle interaction for predicting the steering 

performance of ground-crawling vehicles operating off the road. Devel- 

opment of the model was completed in 1978 (Baladl and Rohani, 1979). 

For its initial validation, results from only five circular-turn tests, 

all conducted at one site, were available for comparison with theoreti- 

cal predictions (Baladi and Rohani, 1981). Data from 35 tests conducted 

at three different soft-soil sites have recently been reduced and are 
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now available for further investigation of the model's validity 

(Schreiner and Green, 1980; Green (in preparation)). 

Purpose and Scope 

2. The purpose of this report is to assess the ability of the WES 

terrain-vehicle interaction model to predict the steering performance 

of tracked vehicles on soft soils by comparing test results with model 

predictions. The test data are limited to the steering performance of 

a selected track-laying vehicle tested at three different soft-soil 

sites. The characteristics of the soil at the test locations are 

described and values of the soil model material constants are developed 

from in situ direct shear measurements in Part II. The test procedure, 

prediction methodology, and comparisons of model predictions with test 

data are presented in Fart III. Part IV contains a summary and recom- 

mendations for future work. In Appendix A the terrain-vehicle model 

reported by Baladi and Rohani (1979 and 1981) is extended to include 

the treatment of sloping terrain under nonuniform (transient) turning 

motion. Description and use of a direct shear device for measurement 

of pertinent soil properties are documented in Appendix B. Soil 

classification data for all test sites are given in Appendix C. 
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PART II: SITE CHARACTERIZATION 

Background 

3. One of the most important engineering properties of a soil 

affecting trafficability is its in situ shear strength. The shear 

strength of earth materials varies greatly for different types of soil 

md is dependent on the confining pressure and time rate of loading 

(shearing). This dependence, however, varies with respect to the 

soil's cohesive and ffictional properties. It has been found experi- 

mer.lally that the shear strength of purely cohesive soils (such as a 

saturated plastic clay) is relatively independent of the confining 

stress, but strongly affected by the time rate of shearing. On the 

other hand, the shear strength of purely frictional soils (such as a 

dry clean sand) is found to oe relatively independent of time rate of 

loading, but strongly dependent on confining pressure. The shearing 

resistance of most soils, however, is due to both frictional and 

cohesive components. An appropriate test for determining shear strength 

for application in mobility studies is a direct shear test conducted in 

situ on the soil surface. A field direct shear device has been devel- 

oped at the WES for such applications and is documented in Appendix B. 

This device was used to measure the in situ shear strength of the soil 

at each test location. 

Test Sites 

4. The mobility tests were conducted at two sites (test sites 7A 

and 7B) on a floodplain north of Redwood, Mississippi, and on a hydrau- 

lically-filled dredge spoil area (test site 8) within the WES reserva- 

tion ?.t Vicksburg, Mississippi (Schreiner and Green, 1980). The 

floodplain soil at Redwood is a soft, plastic clay classified as CH 

..•VJ.u-.JJi,t;j..--|...,;. 
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according to the Unified Soil Classification System* (USCS); however, 

test site 7A was on plowed ground while test site 7B was on natural 

ground. The dredged soil at test site 8 is a lean, brown clay classi- 

fied as CL according to the USCS. Six test series were ccaducted at 

these sites during June 1979. Table 1 lists the location and date of 

each test series and also includes the average rating cone index (RCI), 

a measure of the soil's remolded resistance to penetration by the 

standard WES cone penetrometer (Smith, 1964), for each test series. 

Soil classification data for the test locations are given in Appendix C. 

It is noted from Table 1 that within each test site the strength of the 

soil varies for different test locations. For example, test series 107- 

111 and 139-144 were both conducted at test site 7B, but the strength of 

the soil at the two test locations is different. 

Direct Shear Test Results 

5. Eighty-three direct shear tests were conducted at the test 

sites using the procedure outlined in Appendix B.** Both slow and fast 

tests were conducted to ascertain the sensitivity of the shear strength 

of the material to the rate of deformation. In the case of fast tests, 

the soil specimens were sheared at a strain rate of approximately 0.125 

to 0.25 per sec. This range of strain rates is compatible with the 

average strain rate experienced by the soil particles under the track of 

the test vehicle during steering. This strain rate is estimated from 

slip velocity calculations to be on the order of 0.1 per sec. The slip 

velocity calculations are based on actual measurements of track velocity 

and vehicle speed during steering. 

* The Unified Soil Classification System is described in Technical 
Memorandum No. 3-357 by the U. S. Array Engineer Waterways Experiment 
Station (1953). 

** Raw data from these tests are available at the WES. Only a summary 
of the synthesized data necessary for model predictions is presented 
in this report. 



^a^&T^i -^.Ni^ism >T^t»v-ii»<tf 

6. Direct shear tests were conducted using applied normal loads 

of 8.6, 36.6, 65.7, and 122.7 lb* corresponding, respectively, to 

normal stresses of 0.5A, 2.29, 4.1i, and 7.67 psi. The ground contact 

pressure for the test vehicle is 5.71 psi. Therefore, the range of 

normal stresses used in the test program is applicable to the test 

vehicle of interest. Figure 1 shows typical load-deformation data 

obtained from the direct shear device. As indicated in Figure 1 in the 

case of fast tests, the soil specimens were monotonically sheared to 

failure, whereas the slow tests experienced several load-unload cycles 

of deformation. The load-deformation data were used to construct 

representative failure curves for the six. test locations indicated in 

Table 1. The representative failure curves are portrayed in Figures 

2-7 as plots of peak shear load versus normal load for both the slow 

and fast tests. For load-deformation curves that did not exhibit a 

distinct peak, the value of shear load at 15 percent strain (correspond- 

ing to 0.6 in. of deformation) was selected to construct the failure 

curves. The data indicate that the increase in the shear load beyond 

15 percent strain is negligible. The average values of wet density and 

water content given for each of the test locations in Figuir-es 2-7 

correspond to the average of the wet density and water content of the 

soil specimens tested at each location. The failure curves in these 

figures clearly demonstrate that the shear strength of the soil for all 

three sites is sensitive to the rate of deformation.  It is further 

observed from Figures 2-7 that the shear strength of the CL soil at 

site 8 is considerably higher than the shear strength of the CH soil at 

sites 7A and 7B. Tiie same relative difference in shear strength 

between the two materials is also reflected in the RCI readings listed 

in Table 1. 

Material Constants for Soil Model 

7. As pointed out previously, the purpose of the direct shear 

* A table of factors for converting U. S. customary units of measure- 
ments to metric (SI) units is presented on page 3. 
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tests was to determine the in situ shear strength of the material for 

site characterization within the framework of the soil model described 

in Appendix A.  Such a characterization is necessary in order to use 

the WES terrain-vehicle interaction model for predicting the steering 

performance of the vehicle on the particular terrain of interest. The 

soil model contains six material constants. Three of the material 

constants (A, M, and N) describe the static failure envelope of the 

mater.'al (see Equation Al and Figure Al, Appendix A); two parameters (A 

and Cj) define the contribution to cohesive strength of the material 

due to dynamic loading (see Equation A2 and Figure Al); and one parame- 

ter (G) defines the initial sh0ar stiffness coefficient of the soil 

(s«.-» Equation A3 and Figure A2). The first step in determining the 

numerical values of the material constants A, M, and N is to convert 

the slow test failure :urves in Figures 2-7 to shear strength T^ 

versus normal stress o relations by simply dividing the shear load 

and norm; xoad by the cross-sectional area of the soil specimen (4- by 

4-in. specimen). The second step involves fitting Equation Al to the 

resulting TM versus a curves. Figures 8-13 portray the experimental 

x^ versus o curves and the corresponding model behavior for each of 

the test locations.  It is observed from these figures that the agree- 

ment between field measurements and model behavior is excellent. The 

parameter C^ > corresponding to the increase in soil cohesion due to 

dynamic loading (maximum loading rate of interest), can be determined 

from Figures 2-7. Basically, C^ corresponds to the difference between 

the fast and slow failure curves at zero normal load divided by the 

crosr-sectional area of the specimen. The parameter A defines the 

rate of increase in soil cohesion due to deformation velocity (Equation 

A2). If shear test data were available for several rates of deforma- 

tion, the value of A would be determined by fitting Equation A2 (for 

o=0) to a plot of cohesion versus deformation velocity, as indicated 

in Figure B5, Appendix B. In the absence of such information, however, 

A is treated as a fitting parameter; i.e., the value of A is deter- 

mined on the bails of fitting Equation A4 to the stress-deformation 



curves from fast tests. Before fitting Equation AA to the stress- 

deformation curves, the value of the initial shear stiffness coefficient 

G must be known. The parameter G is, in general, dependent on the 

normal stress and the deformation velocity (Figure B5). Within the 

framework of the present soil model, however, G is assumed to be a 

constant and independent of either the normal stress or the deformation 

velocity. Parametric studies conducted with the terrain-vehicle model 

have indicated that the steering performance of the vehicle is only 

mildly dependent on the soil parameter G . Therefore, it is not 

necessary to characterize this parameter precisely. The procedure 

adopted to determine G is first to plot the  initial slopes of the 

stress-deformation curves versus normal stress from both the slow and 

fast teyts. Then, using this plot, select an average value of G at a 

normal stress level corresponding to the ground contact pressure for 

the vehicle of interest. 

8. The numerical values of the six material constants were deter- 

mined for all the test locations following the above procedures and are 

summarized in Table 2. To demonstrate the validity of the soil model 

for simulating the stress-deformation response of the material from 

direct shear tests, typical experimental data from fast tests are 

compared in Figures 14-19 with the corresponding model behavior. The 

deformation velocity A of 0.75 in./sec used in the soil model calcu- 

lations corresponds to an average velocity for the fast tests. The 

comparisons were made for a normal stress a of 4.11 psi, the direct 

shear test value that was closest to the ground contact pressure of Che 

test vehicle (5.71 psi). Comparisons of the field data with model 

behavior in Figures 14-19 indicate that the soil model is capable of 

simulating the pertinent features of the shear stress-deformation 

response of the material very accurately. Some of the field measure- 

ments (e.g.. Figures 18 and 19) exhibit some degree of strain-softening 

that cannot, be simulated with the current version of the soil model. 

However, for the present application of the model, such strain-softening 

behavior is not a significant phenomenon. 

10 



PART III: COMPARISON OF THEORETICAL PREDICTIONS WITH TEST RESULTS 

Test Procedure 

9. The field tests consisted or a number of circular-turn tests; 

details of the test procedure are documented in a study by Green (in 

preparation). The principal objectives of the circular-turn tests 

were:  (a) determine the effects of turning radius on turning perform- 

ance in terms of vehicle speed and power requirements, (b) determine 

the effects of soil strength on turning performance, and (c) develop a 

data base to check the accuracy and range of application of the WES 

terrain-vehicle interaction model. Basically, each test involved 

running the tracked vehicle in a circular path by first accelerating 

the vehicle to a maximum speed (controlled by either the available 

power or the actual physical stability of the vehicle) and then con- 

tinuously turning it in a near steady-state condition. The tracked 

vehicle used for the field tests is an armored personnel vehicle with 

the characteristics listed in Table 3. The actual data collected 

during each test consisted of time histories of (a) sprocket rpm and 

torque, (b) turning radius, and (c) velocity of the vehicle. Then the 

track velocities, lateral acceleration, and power consumption were 

calculated for each test using these measurements and appropriate 

equations (Figure 20), In addition to the above data, stopwatch times 

for each revolution and posttest measurements from the center of the 

circle to the inner and outer track ruts were obtained to calculate an 

average effective vehicle speed and turning radius for each circular 

path. This information provided a check on the turning instrumentation. 

Also, in order to determine the coefficient of rolling resistance () 

(see Equation A46), acceleration/deceleration (AC/DC) tests were con- 

ducted at each test location (Green (in preparation)). Table 4 lists 

the resulting values of |$ for the six test locations. 

11 
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Prediction Methodology 

10. The prediction methodology associated with the WES terrain- 

vehicle interaction model is illustrated in Figure 21.  The model input 

consists of three separate sets of data. The first set of data 

describes the mechanical properties of the terrain within the framework 

of the soil model described in Appendix A.  Table 2 presents the data 

necessary for this set of input parameters for all test locations. The 

second set of data describes the characteristics of the vehicle and the 

coefficient of rolling ' isistance for each test location. Tables 3 and 

4 outline such information for the vehicle of interest for all the test 

locations. The third set of input data describes the conditions by 

which one would drive the model. There are several combinations of 

driving conditions that can be used depending on the nature of the 

particular problem at hand (Baladi and Rohani, 1979).  For the particu- 

lar application of interest in this report, the driving conditions 

consist of the time histories of the inner and outer track velocities, 

which are obtained from actual field measurements.  For these specified 

driving conditions, the model outputs the time histories of vehicle 

velocity, slip velocities, lateral acceleration, power at sprockets, 

turning radius, and offset. These quantities can then be compared with 

corresponding field data in order to determine the accuracy of the 

model. As indicated in Figure 20, the field data for the circular-turn 

tests consist of vehicle velocity, turning radius, lateral acceleration, 

and power at the sprockets. The average slip velocity can also be 

calculated from the direct field measurements if desired. 

11. In using the time histories of track velocities to drive the 

terrain-vehicle interaction model, the field measurements were filtered 

and fitted by analytical expressions because the field data included 

artificial high-frequency oscillations that are believed to be instru- 

mentation "noise." These oscillations lead to frequent crossings of 

the two track velocity-time histories, which are unrealistic for the 

circular-turn tests of interest. To filter the data, each track 

velocity-time history was first numerically integrated. The integrated 

12 



Ji-'j*^«!^'' '■-' ■"—^i--'v'■' 
■ ■ -W»«M-J»*MJ. ««'*, * 

results were plotted versus time and were represented by a Fourier 

series containing 21 terms. The Fourier series was then differentiated 

to yield an expression for the track velocity. The differentiated 

analytical expression for the track velocity has the following form 

= A1 + B1 + 

21 
E 

1=2 

2Tr(i-l) 
D. cos 
i 

2Tr(i-l)t 
A. sin 
i 

2Tr(i-l)t 
T. (1) 

where 

v = track velocity 
x 

T = total time indicating the duration of the event 

t = time 

A., B. (i = 1,...,21) = constants 
ii 

The numerical values of the coefficients A. and B. are given in 

Tables 5-13 for use of Equation 1 by interested individuals. Compari- 

sons of the filtered data and field measurements for all the tests are 

presented in the next section. 

Theoretical Predictions 

12. The experimental program consisted of 35 circular tests 

divided into six test series (Table 1). Unfortunately, due to instru- 

mentation problems, complete data (as described in Figure 20) were 

collected for only 16 tests. These tests are referred to as "good 

tests." The data for other tests were either partially complete or of 

poor quality. The theoretical predictions reported in this section 

include the 16 good tests (all from sites 7A and 7B) and one test with 

poor quality data (from site 8). The 16 tests consist of tests 99, 100, 

101, 102, 107, 108, 109, 110, 111, 117, 118, 133, 134, 139, 140, and 

141. Test 157 (from test series 157-159) was selected as an example of 

a test with poor quality data. Two types of predictions are made for 

the tests above and are discussed in the following paragraphs. 

13 
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Complete transient simulation 

13. To demonstrate the ability of the terrain-vehicle model for 

predicting transient motion, the response of the vehicle was simulated 

for the entire test event. The results of these simulations are 

portrayed in five figures for each test. The first figure consists of 

the time histories of the outer and inner track velocities that con- 

stitute the driving conditions for the model. This figure includes 

both the field measurements and the filtered data (see paragraph 11), 

which are used as input to the model. The next three figures show the 

time histories of the vehicle speed, lateral acceleration, and power 

requirement, and include both the field measurements and the correspond- 

ing model predictions. The fifth figure shows the trajectory of the 

center of gravity of the vehicle and includes both field measurements 

and predictions. Figures 22-106 show the simulation results for the 17 

tests indicated in paragraph 12. The figure numbers corresponding to 

each test are listed in the following tabulation: 

Figure No. 
Test Track Vehicle Lateral Power 
No. Velocity Velocity Acceleration Requirement Trajectory 

99 22 23 24 25 26 
100 27 28 29 30 31 
101 32 33 34 35 36 
102 37 38 39 40 41 
107 42 43 44 45 46 
108 47 48 49 50 51 
109 52 53 54 55 56 
110 57 58 59 60 61 
111 62 63 64 65 66 
117 67 68 69 70 71 
118 72 73 74 75 76 
133 77 78 79 80 81 
13A 82 83 84 85 86 
139 87 88 89 90 91 
140 92 93 94 95 96 
141 97 98 99 100 101 
157* 102 103 104 105 106 

* Representative test with poor quality data. 

14 



»h**>M>«e>Mv*M>fe-t«tvA- .*wf~ -^»^-««•^»■.rM'-. *M»r^>r^v«Tr:"»"<rrr!' 

The measured time histories basically manifest two types of oscilla- 

tions—low frequency and high frequency. The high-frequency oscilla- 

tions, as pointed out earlier, are primarily due to instrumentation, 

and no physical interpretation should be attached to them.  The low- 

frequency oscillations, however, are real and are partly due to driver 

response (i.e., sudden acceleration and deceleration of the vehicle due 

to steering correction to maintain a prescribed circular path) and 

partly due to surface roughness, inhomogeneity of surface materials, 

and the fact that the ground is not an ideally flat, level surface. 

Because of these factors, it is not possible to maintain the vehicle in 

a perfect steady-state mode of motion. Therefore, in comparing the 

field data with model predictions, it is the overall response that must 

be considered, not the peaks and valleys of the oscillatory records. 

With this in mind, the comparisons between model predictions and field 

measurements are very reasonable for the "good tests" (Figures 22-101). 

For several of these tests, however, the predicted power requirement is 

lower than the field data (e.g., Figures 30 and 35). Examination of 

the field notes indicated that there was excessive mud buildup inside 

the tracks of the vehicle for these tests. The mud buildup (which is 

not simulated by the model) would require additional power to steer the 

vehicle. The results of test 157 (poor quality data) are presented in 

Figures 102-106. It is obvious from these figures that except for 

turning radius the field measurements are of poor quality. 

Steady-state simulation 

14. As pointed out in the previous paragraph, it was not possible 

to maintain the vehicle in a perfect steady-state mode of motion during 

the entire test event. However, it is possible to select a small time 

window for each test where the motion of the vehicle can be reasonably 

approximated as steady state. The steady-state version of the terrain- 

vehicle interaction model (Appendix A) can then be used to simulate 

such motions. Such simulations were documented for tests 107-111 

(Baladi and Rohani, 1981); for ease of reference, the results are again 

presented in this report. The time windows and the corresponding test 

data consisting of the steering ratio e , vehicle velocity v , 

15 
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2 
turning radius    R    ,  lateral acceleration   v /R g , and total power    PT 

for conducting the steady-state simulations are given in the following 

tabulation for all of these tests: 

Lateral 

Test 
No. 

Time 
sec 

60    66 

Steering 
Ratio 

e 

Vehicle 
Speed 
v, mph 

24.88 

Turning 
Radius 
R , ft 

0 

155.77 

Acceleration 

v27Rog 
Power 
PT,  hp 

107 1.08 0.265 210 

108 81 84 1.29 14.93 63.69 0.234 199 

109 37 
68 

42 
71 

1.12 
1.10 

15.73 
18.22 

103.86 
121.26 

0.16 
0.18 

177 
184 

110 55 59 1.26 16.08 83.40 0.21 200 

111 48 51 1.57 11.79 33.74 0.275 211 

Comparisons of the model predictions with experimental data are 

presented in Figures 107-112 for turning radius versus steering ratio, 

inner track velocity versus turning radius, outer track velocity versus 

turning radius, vehicle speed versus turning radius, power requirement 

versus turning radius, and lateral acceleration versus turning radius, 

respectively.    The model predictions in Figures 108-112 are based on 

both power cutoff and preliminary stability criteria (see Appendix A). 

The turning radius-steering ratio relation shown in Figure 107,  however, 

is unique for a given vehicle and soil condition.    The power cutoff, as 

indicated,  is controlled by the available power.    The preliminary 

stability criteria are based on (Baladi and Rohani, 1979): 

a. Rapid change in the slip velocity of the inner or the outer 
track. 

b. The pivot point falling outside the front edge of the 
track-ground contact area (i.e., the offset equals 0.5 L 
when the center of gravity and center of geometry of the 
vehicle coincide). 

£.      Rapid decrease or increase in the turning radius. 

These stability conditions usually take place at different vehicle 

velocities.    The unstable vehicle velocity is chosen as the minimum 

16 
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velocity at which any of these conditions occur.    For comparison with 

'-he experimental data,  the lower vehicle velocity corresponding to 

either the stability criteria or the power cutoff condition must be 

selected.    As indicated in Figure 110,  for the turning radii of 34 ft 

(test 111) and 64 ft (test 108),  stability criteria control the velocity 

of  the vehicle.    For the turning radii of 83 ft (test 110),  104 and 121 

ft  (test 109),  and 156 ft  (test 107),   the velocity of the vehicle is 

controlled by the available power.    With this in mind,  the experimental 

data in Figures 107-112 compare very favorably with the corresponding 

model predictions.    This fact is particularly true in the case of track 

velocities and vehicle speed (Figures 108-110).    Slight observable 

differences between the data and model predictions in Figures  107-112 

should be expected because of the small deviations in the test condi- 

tions from the steady-state mode of motion. 

17 
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PART IV: SUMMARY AND RECOMMENDATIONS 

15. In 1978, the WES developed a mathematical model to predict the 

steering performance of tracked vehicles. In 1979, field tests of a 

selected track-laying vehicle were conducted at plowed and unplowed 

sites on a floodplain north of Redwood, Mississippi, and on a dredge 

spoil area within the WES reservation at Vicksburg, Mississippi. In 

this report, the test measurements are compared with calculated results 

in order to validate the WES terrain-vehicle interaction model for 

predicting tracked-vehicle performance on soft soils. 

16. The floodplain soil at Redwood is a soft, plastic clay (CH); 

the dredged soil at the WES is a lean, brown clay (CL). Eighty-three 

direct shear tests were conducted at the test sites. The shear strength 

of the soils at all three sites was sensitive to the rate of deforma- 

tion; therefore a soil model with a rate-dependent nonlinear failure 

envelope was developed. The soil model contains six material constants; 

values for these constants were defined for each site by fitting the 

model to the in situ test results. The agreement between the soil model 

fits and the field data is excellent. 

17. A total of 35 circular-turn tests were conducted at the three 

sites. Due to instrumentation problems, however, only 16 were con- 

sidered "good tests" for validating the tracked-vehicle model. Theoret- 

ical predictions were made for these 16 "good tests," all of which were 

conducted at the two sites on the floodplain north of Redwood. Theoret- 

ical predictions were also made for one test with poor quality data 

from the dredged soil site. Two types of predictions were made. The 

first type was made using the transient version of '-.he model; the 

second was made using the steady-state version of the model. 

18. The input driving conditions for the 16 transient predictions 

consisted of time histories of inner and outer track velocities 

obtained from actual field measurements. To eliminate artificial high- 

frequency oscillations and frequent unrealistic crossings of the two 

track velocity-time histories, the measured track velocities were 

filtered using Fourier analysis. The model output consisted of time 

18 
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histories of vehicle speed, lateral acceleration, power required at the 

sprockets, and the trajectory of the center of gravity of the vehicle. 

Comparisons with the corresponding experimental results are very 

favorable, indicating that the modal is capable of predicting the 

steering performance of tracked vehicles on soft soil. 

19. Although the vehicle tests were intended to be constant 

velocity or steady-state turn tests, the measured track velocities were 

not constant partly because of (a) driver response (i.e., sudden ac- 

celeration or deceleration of the vehicle due to steering correction to 

maintain a prescribed circular path), and (b) terrain roughness, in- 

homogeneity of surface materials, plus the fact that the terrain is 

not an ideally flat, level surface. Therefore, even "steady-state" 

turn tests should be simulated using the transient version of the 

model. 

20. While it was not possible to maintain the vehicle in a perfect 

steady-state mode of motion (i.e., constant track velocities) during the 

entire test event, steady-state conditions did exist for short periods 

of time during each test. Steady-state calculations were performed for 

selected time windows in five of the "good tests." The input consisted 

of a mean radius for each test; the output consisted of a maximum 

vehicle velocity based on either specified stability criteria or power 

available at sprockets. These predictions also correlated very favorably 

with the corresponding test data. 

21. To further validate the accuracy and range of application of 

the model, data are needed from (a) maneuvering tests using a number of 

tracked vehicles in which the vehicle cnaracteristics (such as weight, 

track length, and tread) are varied, (b) tests conducted on sloping 

terrains, and (c) tests conducted on soils other than a soft, plastic 

clay (e.g., purely cohesionless soils such as dry sand and very hard 

surfaces such as pavements). 

19 
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Table 1 

Test Site, Soil Type, and 

Soil Strength for Each Test Series 

Average 
Soi .1 Strength 

Test Test* 
Site 

7A 

Soil 
Type 

CH 

RCI 
Series 0-6 ir 

40 

,.  6-12 in. 

69 

Date 

98-102 1 June 1979 

107-111 7B CH 24 51 5 June 1979 

117-122 7A CH 57 93 7 June 1979 

131-134 7A CH 61 96 8 June 1979 

139-144 7B CH 54 85 14 June 1979 

157-159 8 CL 210 198 28 June 1979 

* Site 7A is a plowed ground; site 7B is natural ground; 
and site 8 is a hydraulic fill. 

Table 2 

Values of Soil Model Material Constants for 

Each Test Series 

Test 
Series 

■•>, 

psi 
M 
psi 

N 
1/psi 

Cd 
psi sec/in. 

G 
psi/in. 

98-102 3.5 1.94 0.3 1.25 10.0 150.0 

107-111 5.0 3.75 0.22 1.10 10.0 200.0 

117-122 7.8 6.36 0.1 1.75 10.0 200.0 

131-134 5.4 3.65 0.23 2.14 10.0 125.0 

139-144 6.5 4.94 0.09 1.75 10.0 270.0 

157-159 24.0 19.94 0.02 2.64 10.0 250.0 
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Table 3 

Characteristics of Vehicle Used for Turn Tests 

Weight (W) = 18,000 Ibm 

Track Length (L) =   105 in. 

Track Width (D) =    15 in. 

Tread (B) =    90 in. 

Height of the center of gravity (H) =  35.7 in. 

Location of the center of gravity measured from 
the geometrical center of the vehicle {Cyr) =   • 0 in. 

Distance between two adjacent wheels (S,) = 26.25 in. 

Mass moment of inertia (Iz) = 92,000 Ibf-in.-sec 

Approach angle (ea) =    30 deg 

Departure angle (9^) =    30 deg 

Table A 

Rolling Resistance Measured from AC/DC Tests 

Test Series 
Coefficient of Rolling Resistance 

fi,         , . 

98-102 0.19 

107-111 0.20 

117-122 0.16 

131-13A 0.14 

.139-144 0.16 

157-159 0.125 
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Table 5 

Numerical Values of the Coefficients A^ and Bi 

(Equation 1) for Tests 99 and 100 

I 
N 
D 
E 
X 

TEST NUMBER 99 
T 

TEST NUMBER 100 

OUTER TRACK 

B. 
1 

INNER TRACK OUTER TRACK 

B. B. 

INNER TRACK 

A. 
1 

B. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

13.578 

69.935 

18.701 

4.137 

6.782 

2.969 

1.432 

1.704 

0.807 

0.735 

0.980 

0.889 

0.675 

0.251 

0.377 

0.274 

0.408 

0.245 

0.563 

0.407 

0.248 

0 

-55.671 

2.69A 

- 4.374 

- 1.595 

0.088 

- 2.664 

- 0.314 

0.426 

- 0.497 

- 0.070 

- 0.014 

0.798 

0.070 

0.155 

0.181 

0.067 

0.050 

0.050 

0.311 

0.004 

9.2699 

46.269 

14.431 

2.738 

5.189 

1.300 

1.120 

1.347 

0.626 

0,416 

0.823 

0.491 

0.131 

0.649 

0.492 

0.284 

0.378 

0.231 

0.372 

0.013 

0.149 

0 

42.318 

1.706 

- 3.520 

- 1.095 

- 0.344 

1.196 

0.283 

0.330 

0.420 

0.093 

0.229 

0.043 

0.242 

0.043 

0.195 

0.077 

0.017 

0.397 

0.047 

0.071 

10.543 

59.974 

6.788 

5.167 

1.060 

2.457 

-0.073 

0.270 

0.847 

0.151 

-0.544 

-0.330 

-0.468 

-0.232 

-0.246 

-0.119 

-0.106 

0.078 

-0.060 

0.154 

0.081 

0 

-37.856 

-15.614 

-6.928 

-6.089 

-2.182 

-3.239 

-1.512 

-0.421 

-1.037 

-0.120 

-0.354 

0.010 

-0.142 

0.018 

0.073 

0.144 

0.103 

-0.080 

-0.077 

-0.123 

5.652 

35.596 

4.092 

3.339 

0.605 

1.378 

-0.097 

0.583 

-0.470 

-0.115 

0.151 

-0.191 

-0.034 

-0.193 

-0.418 

0.007 

■0.065 

0.089 

0.163 

0.084 

0.091 

0 

-25.739 

- 8.648 

- 3.914 

- 3.669 

- 1.522 

- 1.725 

- 1.013 

- 0.492 

- 0.783 

- 0.014 

- 0.427 

- 0.189 

- 0.148 

- 0.045 

0.181 

- 0.010 

- 0.145 

0.103 

- 0.023 

- 0.032 
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Table 6 

Numerical Values of the Coefficients Aj^ and B^ 

(Equation 1) for Tests 101 and 102 

I 
N 
D 
E 
X 

i 

TEST NUMBER 101 
1 
|                  TEST NUMBER 102 

OUTER TRACK INNER TRACK [     OUTER TRACK 
[ 

INNER TRACK 

Ai Bi Ai »i 1     Ai Bi Ai Bi 

1 13.619 0 10.038 0 13.718 0 11.961 0 

2 61.520 -62.582 50.982 -51.107 51.396 -84.309 48.839 -76.819 

3 17.260 4.926 15.341 4.033 I 41.238 - 7.026 38.371 - 6.153 

4 7.404 - 6.457 6.167 - 5.522 -0.347 - 3.247 0.497 - 3.042 

5 5.600 - 6.986 4.318 - 5.302 |    3.595 

4.954 

0.988 2.938 0.989 

6 1.030 - 0.650 1.255 -0.270 - 3.098 4.736 - 2.617 

7 1.387 - 2.295 0.994 -1.951 4.447 - 0.446 4.196 - 0.230 

8 1.717 0.200 1.478 0.160 ;  -0.402 - 1.386 -0.328 - 1.412 

9 1.354 0.086 1.201 -0.040 1.703 - 0.257 1.571 - 0.097 

10 1.516 - 1.322 0.920 -1.055 |    2.107 - 0.573 1.936 - 0.479 

11 0.853 - 1.094 0.832 -0.685 0.784 - 0.365 0.693 - 0.297 

12 0.655 - 0.267 0.385 -0.237 0.712 - 0.410 0.590 - 0.172 

13 0.324 - 0.339 0.329 -0.164 0.690 - 0.561 0.571 - 0.490 

14 0.579 - 0.043 0.567 -0.066 0.859 0.028 0.852 0.002 

15 0.702 - 0.255 0.361 -0.413 0.701 - 0.169 0.569 - 0.141 

16 0.220 - 0.509 0.063 -0.282 0.498 - 0.254 0.431 - 0.228 

17 0.151 - 0.405 0.115 -0.385 0.379 - 0.326 0.368 - 0.340 

18 0.115 - 0.179 -0.005 0.069 0.386 - 0.393 0.425 - 0.399 

19 0.074 0.045 0.174 0.192 0.486 - 0.130 0.375 - 0.053 

20 0.063 - 0.080 0.347 -0.020 0.276 - 0.083 0.208 - 0.149 

21 0.207 0.008 0.222 -0.130 0.116 - 0.264 0.162 - 0.160 
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Table 7 

Numerical Values of the Coefficients Ai and Bi 
(Equation   1 )  for Testa 107 and 108 



Table 8 

Numerical Values of the Coefficients Ai and Bi 

(Equation 1 ) for Tests 109 and 110 

I 
N 
D 
E 
X 

i 

TEST NUMBER 109 TEST NUMBER 110 

OUTER TRACK |     INNER TRACK |     OUTER TRACK INNER TRACK 

Ai 
Bi Ai Bi 

1 

»i Ai Bi 

1 14.031 0 12.784 0 
j 

1 14,797 0 12.690 0 

2 52.868 -70.877 47.416 -62.742 56.488 -56.478 43.883 -45.917 

3 20.035 -12.873 17.624 -12.932 21.489 - 4.846 18.416 - 5.903 

4 7.470 - 3.498 7.394 - 3.761 6.959 - 2.340 5.494 - 3.293 

i   5 3.473 - 6.441 2.413 - 5.862 4.732 - 1.224 4.645 - 1.795 

6 1.486 - 3.986 1.340 - 3.896 4.012 - 3.666 1.470 - 3.381 

7 0.388 - 2.978 0.254 - 2.572 0.734 - 1.285 0.864 - 0.676 

8 0.277 - 2.222 0.061 - 1.891 1.061 - 1.524 0.710 - 1.479 

9 -0.210 - 1.441 -0.114 - 1.113] 1.140 - 1.151 0.464 - 1.028 

10 -0.352 - 1.389 -0.617 - 1.135 

- 1.186 

-0.237 - 1.469 -0.226 - 0.775 

11 -0.263 - 1.255 -0.476 0.296 0.046 0.561 - 0.000 

12 -0.411 - 0.543 -0.492 - 0.4 1 0.493 - 0.345 0.409 - 0.458 

13 -0.197 - 0.298 -0.034 - 0.3 8 0.358 - 0.200 0.244 - 0.297 

1A -0.333 - 0.603 -0.326 - 0.4 8 0.017 - 0.314 0.083 - 0.113 

15 0.026 - 0.425 -0.139 - 0.4 6 0.305 - 0.069 0.305 - 0.281 

16 -0.391 - 0.496 -0.373 - 0.182 0.243 - 0.233 0.073 - 0.341 

17 -0.050 - 0.048 -0.028 - 0.2 2 0.153 - 0.264 0.062 - 0.235 

18 -0.236 - 0.118 -0.089 - 0.0 9 0.185 - 0.300 0.079 - 0.216 

19 0.121 - 0.234 -0.135 - 0.278 0.141 0.017 0.154 - 0.144 

20 -0.152 - 0.285 -0.099 - 0.027 0.233 - 0.397 -0.090 - 0.258 

21 -0.076 - 0.092 -0.003 - 0.069 0.006 - 0.227 -0.012 - 0.087 
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Table 9 

Numerical Values of the Coefficients k-j  and Bj 
(Equation 1 ) for Tests 111 and 117 

I 
N 
D 
E 
X 

i 

TEST NUMBER 111 TEST NUMBER 117 

OUTER TRACK INNER TRACK OUTER TRACK INNER TRACK 

Ai Bi 
Ai Bi 

^ 
Bi Ai Bi   J 

1 12.484 0 8.201 0 18.062 0 16.643 0 

2 27.350 -33.928 13.408 -21.948 124.848 -134.382 111.637 -119.956. 

3 8.983 - 3.087 5.617 - 2.509 38.878 2.946 35.272 2.856 

4 2.492 - 3.579 1.134 - 2.442 |    4.516 1.541 5.043 1.924 

1    5 2.235 - 3.012 1.840 - 2.127 |    1.554 -4.525 2.061 -2.873 

6 1.641 - 1.656 1.420 - 0.836 11.284 10.782 10.923 8.031 

1    7 0.835 - 1.092 0.316 - 1.023 3.952 -5.554 2.834 -4.562 

1    8 0.727 - 0.535 0.604 - 0.374i 4.976 -1.941 4.349 -1.730 

9 0.365 - 0.568 0.319 - 0.277 1.823 0.120 1.789 0.213 

10 0.231 - 0.619 0.093 - 0.341 0.452 -0.366 0.608 0.122 

11 0.306 - 0.321 0.134 - 0.010 3.198 0.596 3.228 -0.225 

12 0.120 0.110 0.315 0.063 1.50S -1.189 1.027 -0.9 1 

13 0.577 - 0.147 0.223 - 0.220 1.353 -0.482 1.170 -0.464 

1A 0.386 0.001 0.266 - 0.115 0.888 -0.279 0.874 -0.187 

15 0.250 - 0.118 0.074 - 0.165 0.882 -0.340 0.872 -0.140 

16 0.323 - 0.022 0.184 - 0.149 0.847 -0.157 0.970 -0.443 

17 0.443 - 0.173 0.155 - 0.261 0.863 -0.404 0.526 -0.321 

18 0.032 - 0.364 -0.098 - 0.068 0.549 -0.340 0.421 -0.306 

19 0.070 - 0.037 0.042 - 0.055J 0.369 -0.238 0.323 -0.173 

20 0.033 - 0.134 0.026 - 0.108 0.412 -0.083 0.377 -0.046 

21 0.013 - 0.104 0.007 - 0.004 

1 

0.345 -0.098 0.488 -0.221 ; 
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Table 10 

Numerical Values of the Coefficients Ai and Bi 

(Equation 1) for Tests 118 and 133) 

I 
N 
D 
E 
X 

i 

TEST NUMBER 118 j      TEST NUMBER 133 

OUTER TRACK INNER TRACK OUTER TRACK INNER TRACK 

Ai B. 
i 

Ai B. 
i 1  ^ Bi Ai Bi 

1 12.758 0 11.401 0 14.056 0 12.939 0 

2 130.463 -64.318 113.926 -56.462 49.841 -93.290 38.392 -76.958 

3 29.840 - 5.802 27.198 - 5.776 9.315 -15.959 7.855 -13.042 

4 12.431 - 9.290 10.797 - 7.559 -3.691 - 9.206 -2.026 - 7.312 

5 6.003 3.358 6.352 2.520 0.018 - 4.550 -0.068 - 4.678 

6 6.270 - 1.439 5.147 - 1.469 -2.633 - 2.469 -2.398 - 1.895 

7 2.148 - 0.672 2.166 - 0.376 -1.196 - 1.079 -0.983 - 0.788 

8 1.651 - 2.044 1.173 - 1.715 -0.901 - 0.070 -0.550 - 0.050 

9 -0.363 - 0.838 0.102 - 0.634 0.011 - 0.033 -0.060 - 0.277 

10 1.951 - 0.329 1.698 - 0.669 0.254 - 0.529 -0.033 - 0.427 

11 0.804 - 1.087 0.653 - 0.903 0.096 - 0.340 0.073 - 0.277 

12 0.819 - 0.768 0.670 - 0.779 -0.021 - 0.486 0.001 - 0.411 

13 0.285 - 0.543 0.297 - 0.365 0.243 - 0.177 0.164 - 0.467 

14 0.248 - 0.411 0.295 - 0.448 -0.092 - 0.574 -0.280 - 0.291 

15 0.254 - 0.447 0.114 - 0.385 -0.122 - 0.179 0.018 - 0.082 

16 -0.016 - 0.273 0.000 - 0.290 -0.151 - 0.155 -0.019 - 0.082 

17 0.081 - 0.374 0.082 - 0.285 0.093 - 0.063 0.027 - 0.249 

18 3.104 - 0.231 0.105 - 0.261 -0.067 - 0.251 -0.069 - 0.008 

19 0.013 - 0.227 -0.013 - 0.178 0.005 - 0.101 0.132 - 0.093 

20 0.107 - 0.140 0.020 - 0.177 0.012 - 0.169 4.604 - 0.147 

21 0.010 - 0.118 0.029 - 0.090 -0.012 - 0.177 -0.014 - 0.164 
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Table 11 

Numerical Values of the Coefficients Ai and Bi 
(Equation 1) for Tests 134 and 139 

I 
N 
D 
E 
X 

i 

TEST NUMBER 134 TEST NUMBER 139 

OUTER TRACK INNEF . TRACK OUTER TRACK INNER TRACK 

A. 
i Bi Ai Bi Ai Bi A. 

i 
B. 
i 

1 11.273 0 8.009 0 21.834 0 20.196 0 

1    2 19.954 -28.321 9.413 -17.684 122.426 -95.596 111.791 89.443 

3 8.482 - 2.735 4.809 - 2.295 28.839 - 2.653 26.801 -2.998 

4 2.604 - 2.526 1.361 - 1.539 13.627 - 8.559 12.271 -7.919 

1   5 
2.435 - 1.710 1.246 - 0.831 4.825 - 4.434 4.396 -3.921 

i    6 1.311 - 0.589 1.097 - 0.203 3.692 - 1.132 3.395 -1.094 

i    7 1.060 - 0.709 0.677 - 0.494 2.761 - 2.631 2.484 -2.326 

1   8 0.854 - 0.600 0.552 - 0.247 1.110 - 1.663 1.067 -1.418 

1   9 
0.700 - 0.341 0.410 - 0.166 1.111 - 0.398 1.138 -0.391 

10 0.284 - 0.379 0.371 - 0.163 1.470 - 0.906 1.344 -0.904 

11 0.280 - 0.166 0.163 - 0.220 0.676 - 0.773 0.659 -0.816 

12 0.167 - 0.281 0.068 - 0.129 0.795 - 0.591 0.687 -0.647 

13 0.267 - 0.114 0.175 - 0.209 0.411 - 0.422 0.403 -0.347 

14 0.066 - 0.221 0.001 0.025 0.393 - 0.286 0.414 -0.345 

15 0.050 - 0.041 0.169 - 0.014 0.411 - 0.264 0.347 -0.264 

16 0.157 - 0.134 0.006 - 0.038 0.471 - 0.380 0.327 -0.409 

17 0.084 - 0.100 0.081 - 0.042 0.176 - 0.326 0.099 -0.194 

18 0.009 - 0.156 0.086 0.028 0.241 - 0.224 0.171 -0.149 

19 0.053 0.002 0.054 - 0.107 0.259 - 0.274 0.211 -0.236 

20 0.092 - 0.123 0.008 0.003 0.234 - 0.226 0.153 -0.215 

21 0.004 - 0.092 0.024 - 0.025 0.091 - 0.228 0.080 -0.114 

30 



..». -•■■■»■ J-«M1-. 

Table 12 

Numerical Values of the Coefficients A.^  and B.^ 
(Equation 1) for Tests 140 and 141 

I 
N 

D 

E 

X 

TEST NUMBER 140 TEST NUMBER 141 

OUTER TRACK INNER TRACK OUTER TRACK INNER TRACK 

1 Ai Bi 
A. 
i Bi Ai Bi Ai Bi 

1 19.704 0 17.737 0 13.798 0 11.291 0 

2 74.107 -54.121 64.482 -48.583 48.173 -90.447 36.294 -73.407 

3 17.046 - 0.236 15.305 - 0.309 9.322 -12.514 7.749 -10.096 

4 7.022 - 3.780 6.295 - 3.159 - 4.608 - 8.309 -3.391 - 6.502 

5 4.384 - 2.138 4.000 - 1.987 - 4.030 - 4.228 -3.187 - 3.468 

6 1.940 - 1.793 1.670 - 1.649 - 2.995 - 3.521 -2.532 - 3.063 

7 2.320 - 1.831 1.893 - 1.758 - 1.108 - 1.814 -0.990 - 1.399 

8 0.626 - 1.510 0.439 - 1.028 0.117 0.030 0.174 - 0.078 

9 0.880 - 0.209 1.073 - 0.230 0.135 0.417 0.288 0.186 

10 0.866 - 0.739 0.701 - 0.780 0.231 0.272 0.196 0.053 

11 0.480 - 0.637 0.349 - 0.584 0.395 - 0.323 0.106 - 0.388 

12 0.409 - 0.527 0.298 - 0.528 - 0.170 - 0.707 -0,339 - 0.307 

13 0.352 - 0.325 0.326 - 0.354 0.038 - 0.252 0.035 - 0.246 

14 0.328 - 0,415 0.272 - 0.379 0.039 - 0.397 0.008 - 0.340 

15 0.220 - 0.188 0.257 - 0.237 0.048 - 0.169 0.048 - 0.198 

16 0.287 - 0.269 0.139 - 0.326 - 0.02.0 - 0.115 0.024 0.022 

17 0.141 - 0.246 0.051 - 0.166 - 0.089 - 0.190 -0.058 - 0.086 

18 0.099 - 0.153 0.123 - 0.142 - 0.004 0.049 0.114 - 0.027 

19 0.042 - 0.169 0.038 - 0.103 0.102 - 0.129 0.036 - 0.217 

20 0.102 - 0.081 0.113 - 0.080 0.028 - 0.089 0.012 - 0.103 

21 0.099 - 0.116 0.037 - 0.126 0.007 - 0.030 0.065 - 0.094 
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Table 13 

Numerical Values of the Coefficients 
Ai and Bi (Equation 1) for Test 157 

1 
N 
D 
E 
X 

TEST NUMBER 157 

OUTER TRACK 

B. 

INNER TRACK 

B. 

1 

2 

3 

A 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

8.932 

26.942 

10.103 

2.776 

1.926 

1.078 

0.539 

0.443 

0.044 

-0.150 

0.022 

0.032 

0.014 

0.156 

0.073 

-0.052 

0.040 

0.011 

0.085 

0.080 

0.224 

0 

-29.636 

- 2.030 

- 1.681 

- 2.079 

■ 0.708 

- 1.060 

■ 0.887 

■ 0.874 

• 0.107 

■ 0.117 

0.082 

0.059 

0.179 

0.210 

0.013 

0.059 

0.024 

0.092 

0.055 

0.035 

13.486 

52.027 

15.711 

3.711 

2.876 

1.322 

0.625 

0.721 

0.269 

0.057 

0.052 

0.034 

0.010 

-0.032 

0.109 

0.134 

0.071 

0.089 

0.047 

0.035 

-0.004 

0 

-50.415 

- 3.422 

- 3.482 

- 3.277 

- 1.058 

- 1.443 

- 1.039 

- 0.964 

- 0.376 

- 0.383 

- 0.205 

- 0.221 

- 0.095 

- 0.095 

- 0.041 

- 0.071 

- 0.123 

- 0.083 

- 0.166 

- 0.075 
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Figure 1. Typical load deformation curves obtained from the direct 
shear device (site 7A) 
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Figure 2. Peak shear load versus normal load (site 7A, 
test series 98-102) 
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Figure 3. Peak shear load versus normal load (site 7B, 
test series 107-111) 
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Figure 4. Peak shear load versus normal load (site 7A, 
test series 117-122) 
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Figure 5. Peak shear load versus normal load (site 7A, 
test series 131-134) 
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Figure 6. Peak shear load versus normal load (site 7B, 
test series 139-144) 
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Figure 7. Peak shear load versus normal load (site 8, 
test series 157-159) 
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Figure 8.  Comparison of experimental static failure 
envelope with model behavior (site 7A, test series 

98-102) 
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Figure 9. Comparison of experimental static 
failure envelope with model behavior (site 7B, 

test series 107-111) 
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Figure 10. Comparison of experimental static 
failure envelope with model behavior (site 7A, 

test series 117-122) 
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Figure 11. Comparison of experimental static 
failure envelope with model behavior (site 7A, 

test series 131-134) 
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Figure 12. Comparison of experiiP-ntal static 
failure envelope with model beha.ior (site 7B, 

test series 139-144) 

sr 

00 

i 4 
UJ 

h- 
co 
a: < 
UJ 

00 

FIELD MEASUREMENTS 

 SOIL MODEL 

2       4 

NORMAL STRESS a, PSI 

Figure 13. Comparison of experimental static 
failure envelope with model behavior (site 8, 

test series 157-159) 
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Figure 14.    Shear stress-shear displacement relation; field 
measurements versus model behavior (test series 98-102); 

a = A.11 psi,  & = 0.75 in./sec 
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Figure 15.    Shear stress-shear displacement relation;  field 
measurements versus model behavior (test series 107-111); 

o = A.11 psi, A = 0.75 in./sec 
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Figure 16, Shear stress-shear displacement relation; field 
measurements versus model behavior (test series 117-122); 

a = 4.11 psi, A = 0.75 in./sec 
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Figure 17.    Shear stress-shear displacement relation;  field 
measurements versus model behavior (test series 131-13A); 

a = 4.11 psi, A = 0.75 in./sec 
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Figure 18. Shear stress-shear displacement relation; field 
measurements versus model behavior (test series 139-1AA); 

0 = A.11 psi, A = 0.75 in./sec 
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Figure 19. Shear stress-shear displacement relation; field 
measurements versus model behavior (test series 157-159); 

o = A.11 psi, A = 0.75 in./sec 
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Figure 20.    Schematic diagram illustrating the direct and 
indirect field measurements for a circular turn test 
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Figure 21.    Schematic diagram illustrating the validation 
procedure for the WES terrain-vehicle interaction model 
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Figure 22.    Outer and inner track velocity-time histories for 
test 99;  field measurement and filtered data (input) 
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Figure 23.    Vehicle speed-time history for test 99; comparison 
of model predictions with experimental data 
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Figure 24.    Lateral acceleration-time history for test 99; 
comparison of model predictions with experimental data 
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Figure 25.    Total power-time history for test 99; comparison 
of model predictions with experimental data 
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for test 99; comparison of model predictions with experimental 

data 
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Figure 27.    Outer and inner track velocity-time histories for 
test 100;  field measurement and filtered data  (input) 
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Figure 28. Vehicle speed-time history for test 100; comparison 
of model predictions with experimental data 
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comparison of model predictions with experimental data 
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Figure 30.    Total power-time history for lost 100;  comparison 
of model predictions with experimental data 
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Figure 32.    Outer and inner track velocity-time histories for 
test 101; field measurement and filtered data (input) 
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test 102; field measurement and filtered data (input) 
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Figure 69.    Lateral acceleration-time history for test 117; 
comparison of model predictions with experimental data 
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Figure 72.    Outer and inner track velocity-time histories for 
test 118; field measurement and filtered data (input) 
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Figure 75.    Total power-time history for test 118;  comparison 
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Figure 77.    Outer and inner track velocity-time histories for 
test 133;  field measurement and filtered data  (input) 
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APPENDIX A: TERRAIN-VEHICLE INTERACTION MODEL 

Introduction 

1. The basic concepts of the theory of terrain-vehicle interaction 

were developed during the 1950's by Bekker (1963).* By assuming various 

load distributions along the tracks, Bekker was able to develop several 

mathematical expressions relating the characteristics of the vehicle and 

the tractive effort of the terrain during steering.  ly considering the 

lateral and longitudinal coefficients of friction between the track and 

the ground, Hayashi (1975) developed simple equations for practical 

analysis of steering of tracked vehicles. Hayashi's work, however, did 

not include the effect of the centrifugal forces on steering performance 

of the vehicle. Kitano and Jyorzaki (1976) developed a more compre- 

hensive model for uniform turning motion including the effects of 

centrifugal forces. This model, however, is based on the assumption 

that ground pressure is concentrated under each road wheel and the 

terrain-track interaction is simulated by Coulomb-type friction. The 

model given by Kitano and Jyorzaki was extended by Kitano and Kuma 

(1977) to include nonuniform (transient) motion, but the basic elements 

of the terrain-track interaction part of the model were retained. 

Baladi and Rohani (1978) developed a model for uniform turning motion 

parallel to the development by Kitano and Jyorzaki insofar as the 

kinematics of the vehicle are concerned.  In contrast to the development 

by Kitano and Jyorzaki (1976), however, this model is based on a more 

comprehensive soil model. Baladi and Rohani (1979 and 1981) extended 

the WES terrain-vehicle model ompleted in 1979 to include nonuniform 

(transient) motion on level terrain. In addition, the WES soil model 

was modified to include a nonlinear failure envelope describing the 

shearing strength of the terrain material (Baladi and Rohani, 1981). 

* References cited in this appendix are listed in the References sec- 
tion at the end of the main text. 
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In this appendix, the WES terrain-vehicle model is extended to include 

the treatment of nonuniform (transient) turning motion on sloping 

terrain. 

Soil Model 

Strength components 

2. One of the most important properties of soil affecting traffic- 

ability is in situ shear strength.  It has been found experimentally 

that the shear strength of purely cohesive soils is relatively indepen- 

dent of the confining stress, but strongly affected by the time rate of 

shearing. On the other hand, the shear strength of purely frictional 

soils is found to be relatively independent of the time rate of loading, 

but strongly dependent on confining pressure. The shearing resistance 

of most soils, however, is due to both the frictional and cohesive 

components. The cohesive and frictional components of strength are 

usually added together in order to obtain the total shear strength of 

the material. For static loading (very slow rate of deformation), the 

shear failure envelope is defined by 

T = A - M exp(-Na) (Al) 

where 

TM = the maximum shearing strength of the material 

a = the normal stress 

A = the strength of the material when    o    is large 

A-M = C = the strength of  the material or cohesion when    a = 0 

N = a material constant 

Equation Al is shown graphically in Figure Al. 

3.    As noted previously,   the shear strength of cohesive soils 

increases with the increasing rate of  loading.     For the range of load- 

ing rates associated with the motion of  tracked vehicles,  the contribu- 

tion to cohesive strength due to dynamic loading can be expressed as 
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C,[l - exp(-AA)] , where C. and A are material constants and A is 
a a 
the time rate of shearing deformation.  In view of the above expres- 

sion, the dynamic failure criterion takes the following form: 

TM = A + Cd[l - exp(-AA)] - M exp(-Na) (A2) 

When A equals zero, the dynamic failure criterion (Equation A2) 

reduces to the static failure criterion (Equation Al). Both are shown 

graphically in Figure Al. 

Shear stress-shear deformation relation 

4. Prior to failure, the shear stress-shear deformation charac- 

teristics of a variety of soils can be expressed by the following 

mathematical expression (Kondner, 1963): 

G TM A 
(A3) 

xM+G|A 

The behavior of Equation A3 is shown graphically in Figure A2, in which 

T denotes shearing stress, A is shearing deformation, and G is the 

initial shear stiffness coefficient.  Substituting T^ from Equation 

A2, the shear stress-shear deformation relation for soil becomes 

G[A + C, - C exp(-AA) - M exp(-Na)]A 
T =  S 9 .         (A4) 

G|A| + A + C - C, exp(-AÄ) - M exp(-Ncr) 

For purely cohesive soils, N equals zero and T is only a function of 

A and A .  For cohesionless or granular soils, M equals A , 

C, is zero, and T is a function of A and a .  For mixed soils 

exhibiting shearing resistance due to both frictional and cohesive 

components, T is dependent on A , A , and a . The qualitative 

behavior of Equation A4 for these three conditions is shown in Figure 

A3.  It should be pointed out that Equation A4 reduces to the rigid 
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plastic soil model often used in mobility studies when an extremely 

large value is specified for   G    and    A    and is set to zero. 

5. An appropriate test for determining the numerical values of 

the six material constants in Equation A4 is an in situ direct shear 

test.    A field direct shear device has been developed at the WES for 

this purpose.    A description of this device and thp method of analysis 

of the data obtained from the direct shear test are documented in 

Appendix C of a report by Baladi and Rohani in 1979.    For completeness, 

this Appendix C is included herein as Appendix B. 

Derivation of Terrain-Vehicle Model 

Boundary condition 

6. The geometry of the vehicle and  the boundary conditions of the 

proposed model are shown schematically in Figure A4.    The    XYZ    coordi- 

nates are the local coordinate system of which   X    is always the longi- 

tudinal axis of the vehicle and   Y    is a transverse axis parallel to 

the ground.    These axes intersect at the center of geometry of the 

vehicle    0  .    The    Z    axis is a vertical axis passing through the 

origin    0 .    The center of gravity of the vehicle  (CG) lies on the 

X   axis and is displaced by a distance    Cy    from the origin.    The 

numerical value of    C^   is assumed to be positive if    CG    is displaced 

forward from the center of geometry of the vehicle.    The    XY    coordi- 

nates of the instantaneous center of rotation (ICR) are   P + CJJ   and 

R , respectively, where   P   is the offset.    The center of rotation and 

the radius of the trajectory of the   CO    are, respectively,    CR   and 

R0 .    The height of the center of gravity measured from ground surface 

is denoted by    H .    The lengths of the track-ground contact,  the track 

width, and the tread of the tracks are    L ,    D ,  and   B , respectively. 

As shown in Figure A4, the components of the inertial forces    F^ 

in   X    and    Y    directions are, respectively,    F^    and    F^y  •    The 

weight of the vehicle is   W . 

Stress distribution along the tracks 

7. Two types of stress (i.e., normal and shear stresses)  exist 
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along the track. As indicated in Figure A4, thi normal stresses under 

the outer and inner tracks are denoted by R... (X) and R„(X) , respec- 

tively. The components of the shear stress in X and Y directions 

are, respectively, T.. (X) and Q, (X) for the outer track, and T„(X) 

and Q9(x) for the inner track. These stresses are dependent on the 

terrain type, vehicle configuration, and speed and turning radius of 

the vehicle. 

8. The magnitude of normal stresses R,(X) and R„(X) can be 

determined in terms of the components of the inertial force, the track 

tensions, and the. characteristics of the vehicle by considering the 

balance of vertical stresses and their moments in Figure A4. Thus 

R, (x) = -^ 
dL 

1..     hFCY  ,u    FCX , dL VX) 

2 + 6xcx " b IT " 6hx IT + —w— (A5) 

R9(x) =~ 
dL 

1 + .        .h
FCY      „    FCY/LN2(X) 

2 + 6xcx + b IT - 6hx IT + —"w  (A6) 

where 

h = H/L 

b = B/L 

d = D/L 

cx = Cx/L 

x = X/L 

y = Y/L 

z = Z/L 

N1 (x) and N»(x) = contributions due to track tension. 

9. The components of the shear stress in the X and Y direc- 

tions along both the outer and inner tracks can be obtained by combining 
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Equations A4, A5, and A6.A Thus (it is noted that R.. and IL replace 

the normal stress a in Equation A4) 

T.W = y i 
Li 

da + dc, - dc, exp(-X6.)-m exp[-nr.(x)] 

y|6.|d + da + dc, - dc, exp(-X6.)-m exp[-nr.(x)] 
cosy. (A7) 

Q (x) =\u6 
L 

da + dc, - dc, exp(-XiS.)-m exp[-nr.(x)] 

u|ö.|d + da + dc, - dc, exp(-X6.)-in exp[-nr.(x)] 
sinY. (A8) 

i 

where 

1,2 

r.(x) = dL R.(x)/W 
i       i 

6. = A./L 
i   i 

6. A^L 

U = GL /W 

X = AL 

a = AL2/W 

m = ML2/W 

n = NW/L2 

c, = C,L2/W 
d   d 

The variables Y,  and Y9 , in Equations A7 and A8, are the slip 

angles and can be written as 

* To account for the effect of the size of the shear box on the shear 
stiffness G , the measured value of G is normalized by multiplying 
it by 4/L (the length of the shear box = 4 in.). 
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r   -i 
x - p - cx    f Y,   = tan  = tan 

-1 x - P " cx 

-1 X - P " CX -1 x " p " cx 
Y2 = tan  = tan ^ 

(A9) 

where 

^ = ^/L 

C2 = C2/L 

P = P/L 

The parameter    C,     is the distance between the instantaneous center of 

rotation of the outer track    IC.    and its axis of symmetry, and    C«    is 

the distance between the instantaneous center of rotation of the inner 

track    IC«    and its axis of symmetry (Figure A5). 

10.    In order to use Equations A7 through A9,  the normal stress 

ributions due to track tensions    N 

velocities and displacements  (i.e.,    A 

contributions due to track tensions    N.. (x)    and    N„(x)   ,  the track slip 

inertial forces F        and    F 

Jl '   "1 ' 
have to be determined 

A„  ,  and   A„), and the 

These factors 

are discussed in the following paragraphs. 

Normal stress contribution due to track tension 

11. The effect of track tension on the normal stress distribution 

is influenced considerably by the motion of the vehicle.    At relatively 

low speed,  tractive effort is applied to the outer track, while braking 

force is applied to the inner track (Figure A6a).    At high speed, on 

the other hand,   tractive efforts are applied to both tracks  (Figure 

A6b). 

12. The angles    9      and    9,    in Figure A6 are the approach and 

departure angles of the track envelope,  respectively.     The forces    T.. 

and   T„    are the track tension in the outer and inner track, respective- 

ly.    These forces can be obtained by integrating Equation A7.    Thus 
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C-  = L IT (x) dx 

1 
2 

T2 -  L jT2(x) dx 

(A10) 

The normal stress distributions are influenced,  however, by the vertical 

components of the forces    T1    and    T„ ; namely,    n-,   >    no  » and    nl . 

The values of    n..   ,    n„  , and    n'    are 

n.  = T    sin 6d 

T0 sin 6      if 
2            a 

?2io| 

2 "' 

0                  if ^2<0. 

(All) 

(A12) 

-T2 sin ed    if    ^2 < 0 

if C2 -0 

(A13) 

With the determination of the forces   n. and nl ,  the normal 
1 '    "2 

stress contributions due to track tension may be determined. 

13.    Since the tracks are assumed to be rigid,  the normal stresses 

due to track tension may be distributed according to the following 

equations (Figure A7): 
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N, (x) = ax + m 1 o 

1     1 
^ (x) = ax + m + —^ (x + -r 1 o  ,.2 \   2 

for  I-2i^l2 

S,\ c    1     £  1 

(A14) 

and 

2n2 /   in 
N2(x) = aK + mI--2 (^- 2+l) £ 1  I,     1 

or  y-ll^I 

N„(x) = ax + m 
i      i I      i 

for I- 2*-* ±2 'I 

2nl 
(x) = ax + mI+^ (

X
 
+
 2-L) 

for ' 2 - X - L " 2 

(A15) 

in which I    is the distance between two adjacent wheels, and a , 

ID , and mT can be determined by considering the equation of equilib- 

rium of normal stresses and the moments of these stresses.  Thus 

SL      1 

|(ax+mo)dx+    I      ~|(x+|-^) dx = 0 (A16) 

1 
2 

2n. 
/ (ax + m )dx -      I        —^ (x - ^ + -) 

A       I       i j A, dr v    l   L/ 

"2 2      L 

A      1 
L " 2 

dx 

/ ^ ("^"^ 
dx = 0 

1 
2 

(A17) 
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and 

^ (2ax + ^ + n,^ 4 - x) dx -    |     !!| ^ _ i + A^i + i _ ^ dx 

2      L 
(A18) 

Equations A16 through A18 contain three unknowns:    a  ,    m    ,  and    m 

Completing the integrations results in 

^2 (3 - r)(n2 -"' - ni) (A19) 

n    = —^ n1 
0      dL2    1 

(A20) 

mj. = —2 ^n2 + np 
dL 

(A21) 

Substitution of Equations A19 through A21 into Equations A1A and A15 

leads to 

N1(x) = ^~ [(3 - 2ß) (n2 - n^ - n^x + n1] for ß - y 1 x 11 
dL 

N (x) = -^y 
dL 

2n 
(3 - 2ß) (n2 - n]^ - n1) + ~ -(V) ». (A22) 

for --ölx^ß-y 
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and 

N (x) =-T 

dL 

2n 
(3 - 2ß) (n2 - n^ - n^ - — x + (V)' n2 + n2 

for i-i 

(x) = -^2 [(3 - 2ß) (n2 - n^ - n^ x + n2 + n^] 
dL 

r   o   1        1 
for ß -"2lxl"2" 

(A23) 

N9(x) =—■ 
^    dL 

2n'' 
(3 - 2ß) (n2 - n^ - n^ + — ^(H-^) n2 + n2 

where 

for--r<_x<_3--2 

k 
L 

(A24) 

Note that Equations A12 and A13 dictate that either n. or nl in 

Equations A22 and A23 is zero. 

Kinematics of the vehicle 

1A. A tracked vehicle in transient motion is shown schematically 

in Figure A8. The XYZ coordinates are the local coordinate systems 

that are fixed with respect to the moving vehicle (also see Figure A4). 

The origin 0 of this coordinate system stays, for all time, at a 

distance C  from the center of gravity of the vehicle. The W 
A 

coordinate system is fixed on level ground, and its origin coincides 
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with the center of gravity at time zero. The vehicle can maneuver on 

the H'<!> plane and the displacements of the center of gravity of the 

vehicle from this reference frame are ^(t) and $(t) . 

15. The velocities vy and vY (relative to the origin of the 

W coordinate system) as well as the velocities v  and v. are 

related to the instantaneous velocity v of the CG by 

v = \/vx+ A = \N+ vl (A25) 

The side-slip angle   a , which is the angle between the velocity vector 

v    and the longitudinal X   axis of the vehicle,  is related to the 

velocities   v     and   v as 
A 1 

h -1VY  da  /  dvY    dvx\/2 ._- a = tan  " > äE = ^ ^ - vY —jjv (A26) 

The yaw angle u and the directional angle 0 are related to a as 

.        d0  du  da r ko-i\ 0 = " - a ' IT = dF " dE (A27) 

Substitution of Equation A26 into Equation A27 leads to 

dB    du     f     dvY dvxw 2 r&^ 
IF = dF - \vx IT - VY dr//v (A28) 

16. The radius of curvature of the trajectory of the center of 

gravity (i.e., the distance between CR and CG (Figures A5 and A9)) is 

R =v/f = V—A ^ (A29) 
0   ldt        2du)    ^Y,   ^X 

V dt  VX dt   VY dt 
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The coordinates of the trajectory of the center of gravity of  the 

vehicle can be written as 

-/• "Kt)  = - /    v cos 0 dt 

■/■ 

(A30) 

$(t)  =   /    v sin G dt 

17. The coordinates of the instantaneous center of rotation (ICR) 

of the hull in the XY systems (X , Y ) and the instantaneous radius 

of curvature (O are (Figures A5 and A9) 

XI-sP + CX-vY/t+CX 

^1 - - VS (A31) 

h = VR: 2        2 
+ P 

The instantaneous velocities of an arbitrary point e of the hull are 

shown in Figure A9 and can be written as 

v  = v., + Y -r- 
eX   X    dt 

VeY = VY - (X " V Tt (A32) 

\ - \ ("x + ^t) + V
Y - <X - CX> t 
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Track slip velocity and displacement 

18. Assume that v ., (v , = An) is the slip velocity of an si  si   1 r      3 

arbitrary point e.. of the outer track and v „ (v o = ^n>    ^  the 

slip velocity at point e^ (e, and e? have, the same abscissa) of th0. 

inner track (Figure A5). The X and Y components of these velocities 

are 

sXl 
dw      du 

•For the outer track (A33) 

v
SYi = (x-p-cx)frL(x-cx^-vYj 

P du      du 
VsX2 " ^2 dt ' 4 ^ dt 

V    =: V 
sY2   sYl 

' For the inner track (A34) 

As indicated in Figure A10, the angular velocity du/dt and the value 

of R can be written as 

ft = hi  (VX1 " VSX1 " VX2 + VsX2) 

„du  XI   sXl   X2   sX2 
dt 

(A35) 

where 

v  = the velocity of the outer track in X direction 
AX 

v „ = the velocity of the inner track in X direction 

The ratio of v ..  and v „ is defined as the steering rafio e . 

Thus 

e = VX1/VX2 
(A36) 
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Substitution of Equations A31 and A36 into Equation A35 leads to 

bL du^ 
'sXl ""n.      \VX ' 2 
v „T = ev„„ - v„ + 

/  , bL dü)\ 
(VX + T Tt) For the outer track 

(A37) 

VsX2  VX2 " lvX  2 dt 
/    bL dü)\   _,   .  J (v - j— TT I   For the inner track 

Comparison between Equations A37 and A38 and Equations A33 and A34 

results in 

h=  (EVX2 -V/^dä "2 
(A38) 

h = (vx2 -vx)/(Lf) + 
dü)\ , b 

2 

The slip velocities and displacements of the outer and inner tracks can 

be obtained from Equations A33,  A34,  and A37.    Thus 

/Li" 

/Ldo)    12 v„ i2 

(x - cx) 
doi 

^ dt 

(A39) 

_s2 

/Li" 

^do.        2 
,2 

(x - cv) x du 
L dt 

Ll L2 

Al       /      Vsl AI1      A2        /      Vs2 A 

L        •'O        L L    '  L        "O        L 
112 
L (A40) 

where 

t1 =  (L/2 - X)/vxl 
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t2 = (L/2 - X)/vx2 

A  = initial displacement of the outer track 

A » = initial displacement of the inner track 

The balance of forces and moments dictates that these initial displace- 

ments be numerically equal to Li$ (|$ is the coefficient of rolling 

resistance, which must be measured experimentally or calculated from 

empirical relations presented by Rula and Nuttall (1971) for each soil 

type and each vehicle). 

Inertial forces 

19. According to Figure A8, the relationship between the veloci- 

ties Vy, and v. and the velocities v  and vY can be written as 

v = -v.. cos u - vY sin to 

v. = v„ sm u - v„ cos u 
$   X       Y 

(A41) 

The acceleration in V and $ direction, a  and a. , can be 

written as 

aV " dt 

^  dt 

(A42) 

The forward and lateral accelerations, a  and a^ , can be written in 

terms of a^ and aft as 

a„ = -a.„ cos u) + a, sin w 
X   V       $ 

a,, = -a,, sin u - a. cos u 

(A43) 
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Substitution of Equations A41 and AA2 into Equation A43 leads to 

dvX x   da) ^ 
ax = dT + VY dT 

and 

S     du. 
^ ~ dt   VX dt 

> 
(A44) 

Hence, the X and Y components of the inertial force can be written 

as 

and 

^   W    W /dvX .   du) i Fcx = gax-ildr+vYdFy 

W       _ W /^Y du 
^CY " g ^ ~ g \dt   " vx dty 

(A45) 

The rolling resistance 

20. The rolling resistance R  is a function of terrain type, 

vehicle speed, track condition, etc. Therefore, rolling resistance 

should be measured for every specific condition. In this formulation, 

however, the rolling resistance is assumed to be proportional to normal 

load. Thus 

= —2 <5 /  tr, (x 
dL   A 

) + r2(x)]dx (A46) 

Equation of motion 

21. Steerability and stability of tracked vehicles depend on the 

dynamic balance between all forces and moments applied on the vehicle. 

According to Figure A4, the following three equations govern the motion 

of the vehicle: 
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{ i 
f [t^x) + t2(x)] dx- ij [r^x) + r2(x)]dX = f( 

/ [q1(x) + q2(x)] dx = fCY 

I i 
f [q^x) + q2(x)] (x " cx) dx + | jT Lt^x) - t2(x)] dx 

-k "2 

1 

2 I d2u 

+ \ij   [r2W -^Idx—J^-f 

' 2 

where 

^(x) = 'w   \^ 

t2(x) - 'w    T2^) 

q1(x) = dw  ^i(x) 

q2(x) = dw  V*) 
Fcx 

fcx w 

FCY 
fCY w 

(A4 7) 

(A48) 

(A49) 

1 = mass moment of inertia about an axis passing through the 
z  CG of the vehicle and parallel to the Z axis (Figure A4) 
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Equations A47 through A49 with the aid of Equation^ A7 through A46 

constitute three equations that involve three unknow. s. The three 

unknowns are either v , vY , and du/dt or ? ,  ?„ , and p .  In 

order to obtain a complete solution for either of the two sets of 

unknowns, one of the following driving conditions must be specified: 

(a) time history of the steering ratio e(t) and the initial speed of 

the vehicle, (b) time history of the velocity of the individual tracks 

v ..(t) and v „(t) and the initial speed of the vehicle, (c) time 

history of the velocity of the vehicle v(t) and the trajectory of 

motion, (d) time history of the velocity of the vehicle and a constant 

value of steering ratio e , or (e) the trajectory of motion and a 

determination of the maximum velocity time history at which the vehicle 

can traverse the specified trajectory. A computer program called AGIL 

was developed to solve Equations A47 through A49 using Newton's itera- 

tion technique. 

Treatment of sloping terrain 

22. The analysis of the nonuniform turning motion on sloping 

terrain presented in this section is an extension of the corresponding 

analysis for steady-state motion on sloping terrain reported by Baladi 

and Rohani (1979 and 1981). Figure All shows schematically a tracked 

vehicle under nonuniform (transient) turning motion on a terrain with 

slope angle n .  In this case, the weight of the vehicle W could be 

resolved into a normal component (normal to the terrain) W  and a 

parallel component W . Thus 

W = W cos n 

W = W sin n 

(A50) 

In general, the longitudinal axis of the vehicle X makes an angle x 

with the component W  (Figure All). Therefore, the component W 

could be resolved into two components. The first component W   is 
i-A 

A19 
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parallel to the X axis of the vehicle and the second component W, 

is parallel to the Y axis. Thus 
TY 

WTX = WT; 
cos X = W sin n cos x 

WTY = ^ sin X = W sin n sin x 

(A51) 

The angle x is related to the yaw angle w through the following 

relation 

X = u) + v (A52) 

where v is a constant. The numerical value of v depends on the 

initial position of the vehicle (v = 0, 90, 180, and 270 deg corre- 

sponds, respectively, to the initial position of the vehicle at points 

1, 2, 3, and 4 in Figure All). Substitution of Equation A52 into 

Equation A51 leads to 

WT = W sin n cos(ü) + v) 

W  = W sin n sin(u + v) 

(A53) 

In view of Equations A50 and A53, the normal stresses under the outer 

and inner tracks (Equations A5 and A6) become 

R, (x) = -~ 
dL 

cos n , ^        h 
—2— + 6xcx 

cos T1 ~ K 
CY —  sin n sin(u + v) 

- 6hx 
CX 

-rj- + sin n cos(u) + v) 
DLN^x) 

(A54) 
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T,  /  \        W   J cos n  ,   c .  h 
2       =^2\2~+6xCXCOS ^b 

"CY 
sin n sin(ü) + v) 

- 6hx 
CX 

+ sin r\  cos(u + v) 
DLN (xn 

+ -f~   (A55) 

Equations A54 and A55 can be combined with Equations A7 through A46 to 

develop the equations of motion for a sloping terrain. Thus 

j  [^(x) + t2(x)] dx - ,$ j [r^x) + r2(x)] d 

= f  + sin x\  cos(u)+v) (A56) 

J   [qj^Cx) + q2(x)] dx = f  - sin n sinCu + v) (A57) 

\ 

j ^(x) + q2(x)] (x - cx) dx +| J [t2(x) - t^x)] dx 

i  J [rj^Cx) - r2(x)] dx = ~ 
1 d2W 

dt 
(A58) 
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Sprocket power 

23. The steering performance of a tracked vehicle may be limited 

either by its stability or by the power available at the sprockets. 

The powers that must be available at the inner and outer track 

sprockets, PT1 and PT2 , respectively, are 

1 
2 

PT1    L 

Wv/Lg  /Lg  1 
~ 2 

j   [^(x) 61/cos Y1] dx 

'1 
v 

/rl(x 
) dx 

xl      2 
+ ^ cos n —  ;           (A59) 

j   [r1(x) + r2(x)'J dx 

1 
2 

PT2    L 

2 

I [t2(x) Sjcos  Y2] dx 

1 
2 

I r„(x) dx 

_ i 
vy2    ~ 2 + & cos n— —:         (A60) 

j  [r1(x) + r2(x)] dx 

A22 



Therefore, the total power PT and the differential power PTD 

required are 

PT = PT1 + PT2 

PTD = PT1 - PT2 

r\ 

■j 

(A61) 
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DYNAMIC FAILURE ENVELOPE 
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Cd[l - exp(-AÄ)] 

■STATIC FAILURE ENVELOPE 

Figure Al.    Proposed failure relation for soil 
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SHEARING DISPLACEMENT, A 

Figure A2.    Proposed shear stress/deformation relation 
during shearing process  (Equation A3) 
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SHEARING DEFORMATION, A 
a.  PURELY COHESIVE SOIL (T INDEPENDENT OF a) 

SHEARING DEFORMATION, A 
b. GRANULAR SOIL (T INDEPENDENT OF A) 

SHEARING DEFORMATION, A 
c. MIXED SOIL (T DEPENDENT ON BOTH a AND Ä) 

Figure A3.     Qualitative behavior of the soil 
model (Equation 4)  for various types of soil 
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SECTION A-A SECTION B-B 

CR(CENTER OF ROTATION) 

ICRUNSTANTANEOUS CENTER OF ROTATION) 

Figure A4.    Geometry and boundary conditions of the 
terrain-vehicle model 
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*• vsXl 

Figure A5. Slip velocity of track at distance X from the 
center of geometry 
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a. LOW SPEED 

b. HIGHSPEED 

Figure A6.    Track tension at low and high speeds 
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NORMAL STRESS DISTRIBUTION WITHOUT TRACK TENSION 

NORMAL STRESS DISTRIBUTION WITH TRACK TENSION 

a. LOW SPEED 

XU} 
■1/2 — 

—>-X 

0'*fcr/ 

\QO 

b. HIGH SPEED 

Figure A7.  Effect of track tension on normal stress distribution 
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W+i^ 

Figure A9.    Track speeds and velocities of an arbitrary point 
of the hull 
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Fcx-* •► X 

Figure A10. Schematic representation of vehiclu and track 
speeds, track slip velocity, centrifugal forces, and 

turning radius 
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APPENDIX B:    DESCRIPTION OF THE FIELD DIRECT SHEAR DEVICE 

Background 

1.    The terrain-vehicle interaction model described in Appendix A 

required six soil parameters as input  that have to be determined 

experimeatally.    The parameters are (Figures Al and A2,  Appendix A): 

G ,  initial shear stiffness coefficient  (assumed to be indepen- 
dent of rate of deformation) 

A , material constant describing the maximum shearing strength of 
the material at very high normal loading  (Equation Al) 

M , material constant related to the parameter A and to the 
static soil cohesion C as    M = A - C 

N , material parameter which appears in Equation Al 

C,  ,  increase in soil cohesion due to dynamic loading (maximum 
value achieved for loading rates of interest) 

A  , material constant describing the effects of rate of deforma- 
tion on the cohesive strength 

The soil parameters    G  ,    A ,    M ,  and    N    can be determined from 

various existing laboratory test devices,  such as the triaxial shear 

device or direct shear device.    The triaxial shear and direct shear 

devices, however, may not yield the same values of    G ,    A ,    M ,  and 

N    for identical specimens because of differences in test boundary 

conditions.    The stress boundary conditions associated with the direct 

shear test more closely approximate the stress conditions experienced 

by the soil during steering of track-laying vehicles.    It is, therefore, 

more appropriate to determine these parameters from direct shear  tests. 

The parameters    C,    and    A    can only be determined from special static 

and dynamic triaxial shear tests since dynamic direct shear devices are 

not presently available.    Therefore,   to adequately determine the five 

soil parameters,   two separate test series may be required: 

Bl 



cU     Direct shear  tests to define    G  ,  A  ,  M ,  and    N . 

_b.     Static and dynamic triaxial shear tests to define   Cj 
and A   . 

It should be noted  that in determining    C,    and    A    from triaxial tests 

rather than direct shear  tests, it is assumed that these parameters are 

not sensitive to test boundary conditions.     The validity of this 

assumption should,  of course,  be evaluated. 

2. The most important consideration in conducting laboratory soil 

tests is  that the undisturbed specimens be representative of the 

materials over which the vehicle must  travel.    This fact implies that 

the upper several inches of surface material must be sampled,  trimmed 

to necessary specimen size, and tested in the laboratory.    Water con- 

tent,  soil structure, density, and vegetation root systems, all of 

which affect material response, must be preserved.    With this in mind, 

a field-operated direct shear device capable of testing a variety of  in 

situ surface soils for normal loads of interest was designed and 

fabricated.    The description of the device and the procedure by which 

the soil parameters can be determined are documented in this appendix. 

Direct Shear Device 

Design consideration 

3. Previously proposed field devices were considered but rejected 

because of one or more of the following reasons:     (a)  some of the soil 

parameters could not be measured and hence required additional tests-, 

(b)  the necessary support equipment was  too massive to be easily field 

transportable-,  or  (c) specimen disturbances were encountered before 

testing.     The idea of creating a new type of  test was also rejected 

because any new device would contain inherent boundary problems, all of 

which would have to be evaluated with time and usage.    The direct shear 

device,  on the other hand,  has been used extensively,  and it is a 

fairly simple test  to run.    Furthermore,   the four basic soil parameters 

(G ,    A ,    M ,  and    N)  could be measured rather directly from this 
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test. Figure Bl shows a sketch of the field device that was fabricated 

as a result of this project. Figure B2 represents photographs taken of 

the device during the conduct of actual field tests. 

Specimen container 

A. Specimen configuration was the first consideration made in the 

design of the device. It was assumed that in many cases the in situ 

soil could not be sampled without disturbance; therefore, the specimen 

container would have to be placed around the soil. A round ring 

similar to a coring device would afford the least chance of soil 

disturbance. However, the stress distribution along a horizontal plane 

of a circular specimen is not uniform. To reduce the nonuniformity, a 

square-shaped specimen container was selected. 

5. A 4- by 4-in. box was selected in order to keep the shear and 

normal loads within limits of interest to the analysis of track-laying 

vehicles and at the same time retain a reasonably large specimen size. 

The use of deadweights is the simplest way to produce normal load, but 

use of more than 200 lb in weights is awkward for field testing. 

Therefore, with the weight requirement below the 200-lb limit, normal 

stress of up to 12 psi can be produced on a A- by 4-in., r 16-sq- 

in., specimen. However, the largest particle or grain size permissible 

with a 4- by 4-in. specimen is probably 1/2 in., which is a reasonable 

limit for most terrains of interest. 

6. The overall specimen height was controlled by the depth of the 

desired shear plane as directed by grouser depth ranging from approxi- 

mately 3/4 to 1-1/2 in. The compressibility of soil could significantly 

alter this depth, but for estimation purposes the depth was assumed to 

be no greater than 2 in. Therefore, the height of the upper box portion 

was set a»" 2 in., permitting testing of depths from approximately 

1/4 to 2 in. This height, of course, can be altered should particular 

site conditions dictate. The lower box portion was set at 1-1/4-in, 

height, including the cutting edge. A 1/8-in. wall thickness was used 

for both boxes. 

7. figure 53 presents a series of sketches of the specimen con- 

tainer showing the various stages of placement. To minimize specimen 
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disturbance, it was decided to use the specimen cutting box as the 

device container rather than remove the cutting and place a container 

over the specimen. The box consists of three parts:  (a) a lower 

portion wi .h knife-sharp edges to aid In cutting the soil, (b) an upper 

portion, and (c) an outer holder to keep the lower and upper portions 

in alignment. The box is alternately pushed and trimmed into the soil 

to the desired depth. Once in place, the outer holder can i ^ carefully 

removed, leaving the two boxes on the specimen with the joint between 

the lower and upper box portion forming the shear test plane. 

Base 

8. A relatively narrow 1-in.-thick aluminum plate was used to 

construct the base with a square hole at one end to fit around the A- 

by 4-in. lower specimen containers (Figure Bl). The shear loader was 

attached to the other end of the plat?. A second 1-in.-thick aluminum 

yoke was constructed to fit over the upper specimen container.  Set 

screws through the yoke serve to raise the yoke off the baseplate, thus 

minimizing friction between the surfaces. The shear loader attached by 

cable to the yoke pulls the upper specimen while the base reacts against 

the lower specimen container. Guide rails along the edge of the base 

ensure that no torsional shear deformation or twisting is applied to 

the specimen. 

Shear loader 

9. An electric 12-volt boat winch was incorporated into the base 

as the shear loader. This approach is the simplest for providing a 

shear loader.  (If necessary, the winch can be replaced with a more 

sophisticated loader custom-built for this device.) Currently, the 

winch isi capable of pulling loads up to 2000 lb.  Static loading rates 

can be applied by manually turning the winch via a socket-rachet 

arrangement. Fast loading rates (approximately 300-600 msec time to 

peak locd that is  equivalent to a strain rate of 0.5 to 1.5 per i;ec , 

which is compatible with the strain rate under the track) can be applied 

using the electric feature of the winch. The power is supplied hy a 

12-volt car battery, which is also used as the instrumentation power 

supply. 
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Instrumentation 

10. A 2-in. travel film potentiometer is attached to the base and 

records relative movement between the upper specimen holder and the 

base. A strain gage load cell attaching the winch cable to the specimen 

yoke is used to measure shear load. A compact, two-channel DC instru- 

mentation amplifier is used for signal conditioning. Output is recorded 

in the form of a shear load versus deflection plot on a commercially 

available DC-operated X-Y plotter. As previously mentioned, a simple 

car battery is the main power supply. All initial testing was done by 

recording the data on a time base light beam strip chart. This record- 

ing procedure was later dropped since the loading times remained fairly 

constant on the soils tested.  A time base can be added at a later date 

through the use of a frequency oscillatory and an X-Y-Z recorder. 

Normal load 

11. A series of steel weights, the largest weighing 57 lb and the 

smallest weighing 8-1/2 lb, was fabricated for use with the device. 

Guide holes and studs permit stacking and centering of the weights on 

the specimen top surface. Although a variety of load combinations are 

possible, most tests have been conducted using weights totalling 

approximately 8.6, 36.6, 65.7, and 122.7 lb (i.e., normal stress levels 

of 0.5A, 2.29, 4.11, and 7.67 psl). 

Measurement of Soil Parameters 

12. A series of two or more tests is required a:,  a site to define 

the necessary soil parameters.  A typical testing program may call for 

the conduct of four fast and four slow tests at normal stresses of 

0.54, 2.29, 4.11, and 7.67 psi.  For each test an X-Y data record of 

shear load versus deflection is obtained. In addition, measurements of 

soil density and water content are mace on each test specinen (generally 

on the posttest specimen contained in the upper and lower specimen 

holders). 
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13. For each test a plot of shear stress versus deflection is 

obtained. The initial slope of the plot defines G , the peak stress 

defines the maximum shear stress, and the deflection at peak stress 

divided by time to peak stress defines the deflection rate. A table 

listing of each test is used to summarize the data and contains the 

specimen number, wet density, water content, dry density, normal 

load/stress, maximum shear load/stress, initial G , deflection at peak 

stress, and deflection rate. Figure B4 presents the test results 

obtained from the series of field tests conducted at a given site. 

14. The analysis plots are shown graphically in Figure B5. A 

summary plot of shear stress versus shear deformation is made to 

obtain either static or dynamic failure envelopes. From the static 

failure envelope, the values of A , M , and N are obtained. The 

value of Cj and A are obtained from the dynamic failure envelope as 

shown in the plot of cohesion versus rate of deformation. The value of 

G is the initial slope of shear stress-shear deformation curve (Figure 

B4). 

Conclusions 

15. A new agility model for track-laying vehicles was developed 

that required soil parameter input not commonly obtained during mobility 

studies. It was realized that field sampling and laboratory testing 

would not always be possible because of the nature of very near-surface 

soil deposits. An appru ich was taken to use a conventionally accepto.d 

test to define the parameters. A field-operable direct shear device 

and necessary instrumentation were built at the WES. The equipment is 

fairly compact (can easily fit into a car or truck), operates off of a 

car battery, is relatively simple to use, saves operation time compared 

with comparable laboratory tests, and is capable of directly accessing 

the soil parameters. 

16. The device has been used to conduct some 123 tests at several 

different locations. Some of the near-surface soils encountered at 

these locations were very friable and impossible to sample and test in 
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the laboratory by conventional means without excessive disturbance. 

However, the direct shear device performed quite well, only requiring 

extra care by the test operator not to disturb the specimen during 

placement of the device base over the sample box containing the soil 

specimen. The time required to perform a test was approximately one- 

half hour. This time is especially reasonable when compared with the 

time it takes to prepare and test a comparable sample in the laboratory, 

excluding the time spent obtaining the sample in the field. 
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APPENDIX C: SOIL CLASSIFICATION TEST DATA 

1. Appendix C contains gradation curves and soil classification 

data for soil samples from various test sites (Figures C1-C24). These 

test sites and the test series conducted at each one are discussed in 

Part II of the main text. 
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APPENDIX D: NOTATION 

QX 

a* 

A 

b 

B 

B. 
l 

2 

CG 

CR 

d 

D 

Ecx 
ECY 

FC 

FCX 

?CY 

Forward acceleration of the vehicle 

Lateral acceleration of the vehicle 

Acceleration of the vehicle along the $ axis 

Acceleration of the vehicle along the f axis 

Material constant in failure envelope 

Coefficients appearing in the Fourier series expression 
for track velocities 

B/L 

Track tread 

Coefficients appearing in the Fourier series expression 
for track velocities 

CdL
2/W 

Cx/L 

Added cohesive strength due to dynamic loading 

Abscissa of the center of gravity of the vehicle 

Slip radius of the outer track 

Slip radius of the inner track 

Center of gravity of the vehicle 

Center of rotation of the vehicle 

D/L 

Track width 

Fcx/W 

F
CY/W 

Inertia! force 

Longitudinal component of inertial force 

Transverse component of inertial force 

Coefficient of rolling resistance 

\ 

Dl 
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i     • 

IC1 

ic2 

ICR 

i 

L 

m 

M 

n2 or n2 

N1(X) 

N2(X) 

P 

P 

PT 

PT1 

PT2 

PTD 

Q1(X) 

Acceleration due to gravity 

Initial shear stiffness coefficient 

H/L 

Height of center of gravity 

Mass moment of inertlon of the vehicle about an axis 
passing through its center of gravity and parallel to the 
Z axis 

Center of slip rotation of the outer track 

Center of slip rotation of the inner track 

Instantaneous center of rotation of  the vehicle 

Distance between two adjacent wheels 

Contact length of track 

ML2/W 

Material constant in failure envelope 

NW/L2 

Vertical component of T. 

Vertical component of T? 

Material constant in failure envelope 

Contribution due to the outer track tension 

Contribution due to the inner track tension 

P/L 

Offset (distance from center of gravity to pivot point of 
vehicle) 

Total power = PT1 + PT2 

Power required by the sprocket of the outer track 

Power required by the sprocket of  the inner track 

Differential power = PT1 - PT2 

dL^W/W 

dL2Q2(x)/W 

Transverse component of shear stress along the outer 
track 

D2 
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Q2(x) Transverse component of shear stress along the inner 
track 

r^x) dL RAx)/\il 

r2(x) 

R2(X) 

RI 

RCI 

t 

dL R.(x)/W 

Ordinate of the instantaneous center of rotation of the 
vehicle 

Radius of the trajectory of the center of gravity of the 
vehicle 

Rolling resistance 

Normal stress under the outer track 

Normal stress under the inner track 

Instantaneous radius of ciyrvature 

WES rating cone index 

Time 

^(x) dL T^/W 

t2(x) dL T (x)/W 

Track tension in the inner track 

Track tension in the outer track 

T^X) 

T2(X) 

V ,v ,v 
e ex ey 

si 

s2 

sXl 

sX2 

Longitudinal component of shear stress along the outer 
track 

Longitudinal component of shear stress along the inner 
track 

Velocity of the vehicle 

Instantaneous velocity of an arbitrary point of the hull 
and its components along X and Y coordinates 

Total slip velocity of the outer track 

Total slip velocity of the inner track 

Longitudinal component of slip velocity of the outer 
track 

Longitudinal component of slip velocity of the inner 
track 
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vsYl 

sY2 

VX1 

VK2 

X 

X.Y.Z 

y 

z 

a 

JI1 

&I2 

Transverse component of slip velocity of the outer 

track 
Transverse component of slip velocity of the inner 

track 

Longitudinal component of velocity of the vehicle 

Longitudinal component of velocity of the outer track 

Longitudinal component of velocity of the inner track 

Transverse component of velocity of the vehicle 

Component of velocity of the vehicle along the * axis 

Component of velocity of the vehicle along the i)) axis 

Weight of the vehicle 

Component of weight of the vehicle normal to the terrain 

Component of weight of the vehicle parallel to the 

terrain 

X/L 

Local coordinate system 

Y/L 

Z/L 

Side-slip angle 

l/L 
Angle of slip direction of the outer track 

Angle of slip direction of the inner track 

Shearing deformation 

Initial displacement of the outer track 

Initial displacement of the inner track 

Shearing deformation of soil under the outer track 

Time rate of shearing deformation 

Shearing deformation of soil under the inner track 

Time rate of shearing deformation 

DA 



'\ Ä1/L 

S2 Ü2/L 

52 A2/L 

e Steering ratio 

n Angle of sloping terrain 

9 Directional angle 

3 Approach angle of the track envelope 

Departure angle of the track envelope 

Material constant related to rate effect 

AL 

GL3/W 

Angle related to Initial position of the vehicle 

Cj^/L 

C2/L 

Normal stress 

Shear stress 

Maximum shear strength 

IJJ,I(I Coordinate system fixed on level ground 

u) Yaw angle 
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In accordance with letter from DAEN-RDC, DAEN-ASI dated 
22 July 1977,  Subject:    Facsimile Catalog Cards for 
Laboratory Technical  Publications, a facsimile catalog 
card  in l.ihrar.»  of Congress MARC format is reproduced 
below. 

Rohani, Betuad 
Steerability analysis of tracked vehicles on soft soil; 

theoretical predictions versus field measurements / by 
Behzad Rohani and George Y. Baladi  (Geoteclmical 
Laboratory, U.S.  Army Engineer Waterways Experiment 
Station).  -- Vicksburg, Hiss.  : The Station  ; Springfield, 
Va.   : available from NTIS,  1982. 

214 p. in various pagings ; ill.   ;  27 cm.  -- 
(Technical report ;  GL-82-4) 

Cover title. 
"June 1982." 
Final report. 
"Prepared for Office, Chief of Engineers, U.S. Army 

under Project 4A161102AT22, Task CO, Work Unit 001." 
"Monitored by Geotechnical Laboratory, U.S. Army 

Engineer Waterways Experiment Station." 
Bibliograph)': p.   20-21. 

1. AGIL (Computer program).    2. Mathematical models. 
3.  Soil Mechanics.    4. Tracklaying vehicles.    S. Vehicles, 
Military.    I.  Baladi, George Y.    II. United States. 
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Rohani, Behzad 
Steerability analysis of tracked vehicles ... 1982. 

(Card 2) 

Army. Corps of Engineers. Office of the Chief of 
Engineers.    III. U.S. Army Engineer Waterways Bxpe.'liMnt 
Station. Geotechnical Laboratory.    IV. Title 
V.  Series: Technical report  (U.S. Army Engineer Waterways 
Experiment Station)   ; GL-82-4. 
TA7.W34    no.GL-82-4 


